4.4 EMITTTER BIAS CONFIGURATION
1. Pendahuluan[kembali]
Emitter-Bias Configuration adalah salah satu metode pengaturan bias yang penting. Biasa digunakan dalam sirkuit transistor BJT (Bipolar Junction Transistor), konfigurasi ini memberikan stabilitas operasi dan kontrol yang baik terhadap karakteristik transistor.
Transistor BJT adalah jenis transistor yang terdiri dari dua jenis bahan semikonduktor yang berbeda (P dan N), yang membentuk tiga lapisan semikonduktor: emitter, base, dan collector. Transistor BJT memiliki kemampuan untuk menguatkan sinyal listrik dan digunakan dalam berbagai aplikasi sirkuit elektronik, mulai dari penguat sinyal hingga rangkaian switch.
Pada dasarnya, konfigurasi Emitter-Bias merupakan salah satu cara untuk memberikan tegangan bias pada transistor BJT dengan menghubungkan resistor antara emitter dan ground (biasanya dihubungkan ke sisi negatif sumber tegangan). Prinsipnya adalah untuk mengalirkan arus basis dan arus kolektor melalui transistor dengan nilai yang tepat untuk operasi yang diinginkan.
2. Tujuan[kembali]
- Untuk memenuhi tugas mata kuliah Elektronika yang diberi oleh Bapak Dr. Darwison, M.T
- Memahami konfigurasi rangkaian transistor dan bagaimana rangkaian itu digunakan untuk mengatur bias transistor.
- Untuk dapat memahami pengaturan arus basis transistor dan mengontrol penguatan sinyal.
- Untuk dapat mengetahui karakteristik kinerja transistor dalam rangkaian bias-emitor dan bagaimana rangkaian dapat dioptimalkan untuk berbagai aplikasi
3. Alat dan Bahan[kembali]
ALAT
Instrument
- DC Voltmeter
- OSILOSKOP
Osiloskop (Oscilloscope) merupakan alat ukur elektronik yang digunakan mengukur frekwensi, periode dan melihat bentuk-bentuk gelombang seperti bentuk gelombang sinyal audio, sinyal video, dan bentuk gelombang Tegangan Listrik Arus Bolak Balik, maupun Tegangan Listrik Arus Searah yang berasal dari catu daya/baterai.
- Generator
- Baterai
Di mulai dari pengertiannya. Baterai merupakan sebuah benda yang dapat atau bisa mengubah energi kimia menjadi energi listrik. Energi listrik yang dihasilkan oleh baterai tersebut sama seperti accumulator, yakni listrik searah dikatakan DC. Jumlah listrik yang dihasilkan tersebut tergantung dari seberapa besar baterai tersebut.
Baterai |
Spesifikasi :
Resistor berfungsi untuk menghambat arus dalam rangkaian listrik. Nilai resistansi dan arus saling berbanding terbalik, sehingga semakin besar nilai resistansi maka nilai arus yang melalui sebuah komponen semakin kecil. Cara menghitung nilai resistansi resistor berdasarkan kode gelang warna:
3.Transistors
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
Transistor NPN |
- Komponen Lainnya :
- Ground adalah sistem pentanahan yang terpasang pada suatu instalasi listrik yang bekerja untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus dari sambaran petir ke bumi. Ground dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak-balik atau titik patokan (referensi) berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.
1. Resistor
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.
Simbol Resistor Sebagai Berikut :
Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.
Menghitung Nilai Resistor
Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.
Kode Warna Resistor
Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :
1. Masukkan angka langsung dari kode warna gelang pertama
2. Masukkan angka langsung dari kode warna gelang kedua
3. Masukkan angka langsung dari kode warna gelang ketiga
4. Masukkan jumlah nol dari warna gelang ke-4 atau pangkatkan angka tersebut dengan (10^n), merupakan nilai toleransi dari resistor.
Kode Huruf Resistor
Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.
Kode Huruf Untuk Nilai Resistansi :
- R, berarti x1 (Ohm)
- K, berarti x1000 (KOhm)
- M, berarti x 1000000 (MOhm)
Kode Huruf Untuk Nilai Toleransi :
- F, untuk toleransi 1%
- G, untuk toleransi 2%
- J, untuk toleransi 5%
- K, untuk toleransi 10%
- M, untuk toleransi 20%
- Mencari resistansi total dalam rangkaian dapat menggunakan :
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-nParalel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Transistor NPN
Fungsi-fungsi Transistor diantaranya adalah :
- sebagai Penyearah,
- sebagai Penguat tegangan dan daya,
- sebagai Stabilisasi tegangan,
- sebagai Mixer,
- sebagai Osilator
- sebagai Switch (Pemutus dan Penyambung Sirkuit)
Ie = Ic + Ib
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Ib = Arus Basis
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.
NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.
Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.
PRINSIP KERJA TRANSISTOR
Prinsip kerja transistor PNP adalah arus mengalir dari emitor menuju kolektor. Dibandingkan NPN, pada PNP terjadi hal sebaliknya ketika arus mengalir pada kaki basis, maka transistor tidak bekerja. Arus akan mengalir apabila kaki basis diberi sambungan ke ground (-) hal ini akan menginduksi arus pada kaki emitor ke kolektor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari emitor ke kolektor. Penggunaan transistor jenis ini mulai jarang digunakan. Dibanding dengan NPN, transistor jenis PNP mulai sulit ditemukan dipasaran. Transistor jenis PNP adalah transistor negatif dimana akan dapat bekerja mengalirkan arus listrik jika basis dialiri arus negative (-) dan mempunyai lapisan semikonduktor sebagai berikut :- Pada Emitor = Semikonduktor yang dipakai adalah negatif.
- Pada Basis = Semikonduktor yang dipakai adalah positif.
- Pada Kolektor = Semikonduktor yang dipakai adalah negative.
Prinsip kerja transistor NPN adalah arus mengalir dari kolektor menuju emitor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari kolektor ke emitor. Untuk mengalirkan arus tersebut dibutuhkan sambungan ke sumber positif (+) pada kaki basis. Ketika basis diberi tegangan, hingga dititik saturasi, maka akan menginduksi arus dari kaki kolektor ke emitor. Dan transistor akan aktif jika arus yang melalui basis berkurang, maka arus yang mengalir pada kolektor ke emitor akan berkurang, hingga titik cutoff. Penurunan ini sangatlah cepat karena perbandingan penguatan yang terjadi antara basis dan kolektor melebihi 200 kali. Transistor jenis NPN adalah transistor positif dimana akan dapat bekerja mengalirkan arus listrik jika basis dialiri arus positf (+) dan mempunyai lapisan semikonduktor sebagai berikut :- Pada Emitor = Semikonduktor yang dipakai adalah positif.
- Pada Basis = Semikonduktor yang dipakai adalah negatif.
- Pada Kolektor = Semikonduktor yang dipakai adalah positif
RANGKAIAN BIAS EMITTER
Suatu rangkaian bias emitter menggunakan tegangan supply positif dan negatif, Jaringan bias dc pada Gambar memiliki resistor emitor untuk meningkatkan stabilitas konfigurasi fix-bias. Semakin stabil konfigurasinya, semakin sedikit respon yang akan berubah karena perubahan suhu dan variasi parameter yang tidak diinginkan.
Base-Emitter Loop
Collector-Emitter Loop
Loop kolektor-emitor tampak pada Gambar 4.22. Dengan menuliskan hukum voltase Kirchhoff untuk loop yang ditunjukkan searah jarum jam menghasilkan :
Improve Bias Stability
Penambahan resistor emitor ke bias dc dari BJT memberikan peningkatan stabilitas, yaitu, arus dan tegangan bias dc tetap lebih dekat ke tempat yang ditetapkan oleh rangkaian ketika kondisi luar, seperti suhu dan transistor beta, berubah.
Saturation Level
Penambahan resistor emitor mengurangi tingkat kejenuhan kolektor yang diperoleh dengan konfigurasi fixed-bias menggunakan resistor kolektor yang sama.
Example
a) Prosedur[kembali]
Siapkan komponen rangkaian yang dibutuhkan
Rangkai komponen menjadi sebuah rangkaian
Lakukan simulasi rangkaian pada proteus
Analisis rangkaian yang telah dibuat
b) Rangkaian Simulasi dan Prinsip Kerja [kembali]
- FIG 4.18
- FIG 4.19
- FIG 4.17 [Download]
- FIG 4.18 [Download]
- FIG 4.19 [Download]
- FIG 4.20 [Download]
- FIG 4.21 [Download]
- FIG 4.22 [Download]
- FIG 4.23 [Download]
- FIG 4.24 [Download]
- FIG 4.26 [Download]
- VIDIO 4.17 [Download]
- VIDIO 4.18 [Download]
- VIDIO 4.19 [Download]
- VIDIO 4.20 [Download]
- VIDIO 4.21 [Download]
- VIDIO 4.22 [Download]
- VIDIO 4.23 [Download]
- VIDIO 4.24 [Download]
- VIDIO 4.26 [Download]
Komentar
Posting Komentar